Score: 0

Rapid Bone Scintigraphy Enhancement via Semantic Prior Distillation from Segment Anything Model

Published: March 4, 2025 | arXiv ID: 2503.02321v3

By: Pengchen Liang , Leijun Shi , Huiping Yao and more

Potential Business Impact:

Makes blurry bone scans clear for kids.

Business Areas:
Semantic Search Internet Services

Rapid bone scintigraphy is crucial for diagnosing skeletal disorders and detecting tumor metastases in children, as it shortens scan duration and reduces discomfort. However, accelerated acquisition often degrades image quality, impairing the visibility of fine anatomical details and potentially compromising diagnosis. To overcome this limitation, we introduce the first application of SAM-based semantic priors for medical image restoration, utilizing the Segment Anything Model (SAM) to enhance pediatric rapid bone scintigraphy. Our approach employs two cascaded networks, $f^{IR1}$ and $f^{IR2}$, supported by three specialized modules: a Semantic Prior Integration (SPI) module, a Semantic Knowledge Distillation (SKD) module, and a Semantic Consistency Module (SCM). The SPI and SKD modules inject domain-specific semantic cues from a fine-tuned SAM, while the SCM preserves coherent semantic feature representations across both cascaded stages. Moreover, we present RBS, a novel Rapid Bone Scintigraphy dataset comprising paired standard (20 cm/min) and rapid (40 cm/min) scans from 137 pediatric patients aged 0.5 - 16 years, making it the first dataset tailored for pediatric rapid bone scintigraphy restoration. Extensive experiments on both a public endoscopic dataset and our RBS dataset demonstrate that our method consistently surpasses existing techniques in PSNR, SSIM, FID, and LPIPS metrics.

Country of Origin
🇭🇰 Hong Kong

Page Count
12 pages

Category
Electrical Engineering and Systems Science:
Image and Video Processing