Trace of the Times: Rootkit Detection through Temporal Anomalies in Kernel Activity
By: Max Landauer , Leonhard Alton , Martina Lindorfer and more
Potential Business Impact:
Finds hidden computer viruses by timing code.
Kernel rootkits provide adversaries with permanent high-privileged access to compromised systems and are often a key element of sophisticated attack chains. At the same time, they enable stealthy operation and are thus difficult to detect. Thereby, they inject code into kernel functions to appear invisible to users, for example, by manipulating file enumerations. Existing detection approaches are insufficient, because they rely on signatures that are unable to detect novel rootkits or require domain knowledge about the rootkits to be detected. To overcome this challenge, our approach leverages the fact that runtimes of kernel functions targeted by rootkits increase when additional code is executed. The framework outlined in this paper injects probes into the kernel to measure time stamps of functions within relevant system calls, computes distributions of function execution times, and uses statistical tests to detect time shifts. The evaluation of our open-source implementation on publicly available data sets indicates high detection accuracy with an F1 score of 98.7\% across five scenarios with varying system states.
Similar Papers
User-space library rootkits revisited: Are user-space detection mechanisms futile?
Cryptography and Security
Hides bad computer programs from detection tools.
Real-Time Multi-Modal Subcomponent-Level Measurements for Trustworthy System Monitoring and Malware Detection
Cryptography and Security
Finds hidden computer attacks even if the main chip is fooled.
Temporal Analysis Framework for Intrusion Detection Systems: A Novel Taxonomy for Time-Aware Cybersecurity
Cryptography and Security
Finds computer attacks before they cause damage.