Score: 0

Impact of Temporal Delay on Radar-Inertial Odometry

Published: March 4, 2025 | arXiv ID: 2503.02509v1

By: Vlaho-Josip Štironja , Luka Petrović , Juraj Peršić and more

Potential Business Impact:

Helps self-driving cars see in bad weather.

Business Areas:
Indoor Positioning Navigation and Mapping

Accurate ego-motion estimation is a critical component of any autonomous system. Conventional ego-motion sensors, such as cameras and LiDARs, may be compromised in adverse environmental conditions, such as fog, heavy rain, or dust. Automotive radars, known for their robustness to such conditions, present themselves as complementary sensors or a promising alternative within the ego-motion estimation frameworks. In this paper we propose a novel Radar-Inertial Odometry (RIO) system that integrates an automotive radar and an inertial measurement unit. The key contribution is the integration of online temporal delay calibration within the factor graph optimization framework that compensates for potential time offsets between radar and IMU measurements. To validate the proposed approach we have conducted thorough experimental analysis on real-world radar and IMU data. The results show that, even without scan matching or target tracking, integration of online temporal calibration significantly reduces localization error compared to systems that disregard time synchronization, thus highlighting the important role of, often neglected, accurate temporal alignment in radar-based sensor fusion systems for autonomous navigation.

Page Count
8 pages

Category
Computer Science:
Robotics