Score: 0

Interactive Segmentation and Report Generation for CT Images

Published: March 5, 2025 | arXiv ID: 2503.03294v1

By: Yannian Gu , Wenhui Lei , Hanyu Chen and more

Potential Business Impact:

Helps doctors describe medical scans faster and better.

Business Areas:
Image Recognition Data and Analytics, Software

Automated CT report generation plays a crucial role in improving diagnostic accuracy and clinical workflow efficiency. However, existing methods lack interpretability and impede patient-clinician understanding, while their static nature restricts radiologists from dynamically adjusting assessments during image review. Inspired by interactive segmentation techniques, we propose a novel interactive framework for 3D lesion morphology reporting that seamlessly generates segmentation masks with comprehensive attribute descriptions, enabling clinicians to generate detailed lesion profiles for enhanced diagnostic assessment. To our best knowledge, we are the first to integrate the interactive segmentation and structured reports in 3D CT medical images. Experimental results across 15 lesion types demonstrate the effectiveness of our approach in providing a more comprehensive and reliable reporting system for lesion segmentation and capturing. The source code will be made publicly available following paper acceptance.

Country of Origin
🇨🇳 China

Page Count
11 pages

Category
Electrical Engineering and Systems Science:
Image and Video Processing