Large Language Models for Zero-shot Inference of Causal Structures in Biology
By: Izzy Newsham , Luka Kovačević , Richard Moulange and more
Potential Business Impact:
Helps computers understand how life's building blocks work.
Genes, proteins and other biological entities influence one another via causal molecular networks. Causal relationships in such networks are mediated by complex and diverse mechanisms, through latent variables, and are often specific to cellular context. It remains challenging to characterise such networks in practice. Here, we present a novel framework to evaluate large language models (LLMs) for zero-shot inference of causal relationships in biology. In particular, we systematically evaluate causal claims obtained from an LLM using real-world interventional data. This is done over one hundred variables and thousands of causal hypotheses. Furthermore, we consider several prompting and retrieval-augmentation strategies, including large, and potentially conflicting, collections of scientific articles. Our results show that with tailored augmentation and prompting, even relatively small LLMs can capture meaningful aspects of causal structure in biological systems. This supports the notion that LLMs could act as orchestration tools in biological discovery, by helping to distil current knowledge in ways amenable to downstream analysis. Our approach to assessing LLMs with respect to experimental data is relevant for a broad range of problems at the intersection of causal learning, LLMs and scientific discovery.
Similar Papers
Can Large Language Models Help Experimental Design for Causal Discovery?
Artificial Intelligence
Lets computers find science answers faster.
Causal MAS: A Survey of Large Language Model Architectures for Discovery and Effect Estimation
Artificial Intelligence
Helps AI understand why things happen.
Can LLMs Assist Expert Elicitation for Probabilistic Causal Modeling?
Artificial Intelligence
Helps doctors understand health problems better.