Score: 1

Gaussian Random Fields as an Abstract Representation of Patient Metadata for Multimodal Medical Image Segmentation

Published: March 7, 2025 | arXiv ID: 2503.05214v2

By: Bill Cassidy , Christian McBride , Connah Kendrick and more

Potential Business Impact:

Helps doctors find and track slow-healing wounds.

Business Areas:
Facial Recognition Data and Analytics, Software

The growing rate of chronic wound occurrence, especially in patients with diabetes, has become a concerning trend in recent years. Chronic wounds are difficult and costly to treat, and have become a serious burden on health care systems worldwide. Chronic wounds can have devastating consequences for the patient, with infection often leading to reduced quality of life and increased mortality risk. Innovative deep learning methods for the detection and monitoring of such wounds have the potential to reduce the impact to both patient and clinician. We present a novel multimodal segmentation method which allows for the introduction of patient metadata into the training workflow whereby the patient data are expressed as Gaussian random fields. Our results indicate that the proposed method improved performance when utilising multiple models, each trained on different metadata categories. Using the Diabetic Foot Ulcer Challenge 2022 test set, when compared to the baseline results (intersection over union = 0.4670, Dice similarity coefficient = 0.5908) we demonstrate improvements of +0.0220 and +0.0229 for intersection over union and Dice similarity coefficient respectively. This paper presents the first study to focus on integrating patient data into a chronic wound segmentation workflow. Our results show significant performance gains when training individual models using specific metadata categories, followed by average merging of prediction masks using distance transforms. All source code for this study is available at: https://github.com/mmu-dermatology-research/multimodal-grf

Country of Origin
🇬🇧 United Kingdom

Repos / Data Links

Page Count
11 pages

Category
Electrical Engineering and Systems Science:
Image and Video Processing