Score: 0

A sharp-interface discontinuous Galerkin method for simulation of two-phase flow of real gases based on implicit shock tracking

Published: March 7, 2025 | arXiv ID: 2503.05557v1

By: Charles Naudet, Brian Taylor, Matthew J. Zahr

Potential Business Impact:

Simulates explosions and gas flow very accurately.

Business Areas:
Simulation Software

We present a high-order, sharp-interface method for simulation of two-phase flow of real gases using implicit shock tracking. The method is based on a phase-field formulation of two-phase, compressible, inviscid flow with a trivial mixture model. Implicit shock tracking is a high-order, optimization-based discontinuous Galerkin method that automatically aligns mesh faces with non-smooth flow features to represent them perfectly with inter-element jumps. It is used to accurately approximate shocks and rarefactions without stabilization and converge the phase-field solution to a sharp interface one by aligning mesh faces with the material interface. Time-dependent problems are formulated as steady problems in a space-time domain where complex wave interactions (e.g., intersections and reflections) manifest as space-time triplet points. The space-time formulation avoids complex re-meshing and solution transfer that would be required to track moving waves with mesh faces using the method of lines. The approach is applied to several two-phase flow Riemann problems involving gases with ideal, stiffened gas, and Becker-Kistiakowsky-Wilson (BKW) equations of state, including a spherically symmetric underwater explosion problem. In all cases, the method aligns element faces with all shocks (including secondary shocks that form at time t > 0), rarefactions, and material interfaces, and accurately resolves the flow field on coarse space-time grids.

Page Count
35 pages

Category
Physics:
Fluid Dynamics