Score: 0

Machine Learning-based Regional Cooling Demand Prediction with Optimised Dataset Partitioning

Published: March 4, 2025 | arXiv ID: 2503.05813v1

By: Meng Zhang, Zhihui Li, Zhibin Yu

Potential Business Impact:

Predicts how much buildings need cooling.

Business Areas:
Predictive Analytics Artificial Intelligence, Data and Analytics, Software

In the context of global warming, even relatively cooler countries like the UK are experiencing a rise in cooling demand, particularly in southern regions such as London. This growing demand, especially during the summer months, presents significant challenges for energy management systems. Accurately predicting cooling demand in urban domestic buildings is essential for maintaining energy efficiency. This study introduces a generalised framework for developing high-resolution Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks using physical model-based summer cooling demand data. To maximise the predictive capability and generalisation ability of the models under limited data scenarios, four distinct data partitioning strategies were implemented, including the extrapolation, month-based interpolation, global interpolation, and day-based interpolation. Bayesian Optimisation (BO) was then applied to fine-tune the hyper-parameters, substantially improving the framework predictive accuracy. Results show that the day-based interpolation GRU model demonstrated the best performance due to its ability to retain both the data randomness and the time sequence continuity characteristics. This optimal model achieves a Root Mean Squared Error (RMSE) of 2.22%, a Mean Absolute Error (MAE) of 0.87%, and a coefficient of determination (R square) of 0.9386 on the test set. The generalisation ability of this framework was further evaluated by forecasting.

Page Count
20 pages

Category
Physics:
Physics and Society