Score: 0

On the complexity of solving equations over the symmetric group $S_4$

Published: March 10, 2025 | arXiv ID: 2503.07285v1

By: Erhard Aichinger, Simon Grünbacher

Potential Business Impact:

Makes hard math problems easier for computers.

Business Areas:
Quantum Computing Science and Engineering

The complexity of solving equations over finite groups has been an active area of research over the last two decades, starting with Goldmann and Russell, \emph{The complexity of solving equations over finite groups} from 1999. One important case of a group with unknown complexity is the symmetric group $S_4.$ In 2023, Idziak, Kawa{\l}ek, and Krzaczkowski published $\exp(\Omega(\log^2 n))$ lower bounds for the satisfiability and equivalence problems over $S_4$ under the Exponential Time Hypothesis. In the present note, we prove that the satisfiability problem $\textsc{PolSat}(S_4)$ can be reduced to the equivalence problem $\textsc{PolEqv}(S_4)$ and thus, the two problems have the same complexity. We provide several equivalent formulations of the problem. In particular, we prove that $\textsc{PolEqv}(S_4)$ is equivalent to the circuit equivalence problem for $\operatorname{CC}[2,3,2]$-circuits, which were introduced by Idziak, Kawe{\l}ek and Krzaczkowski. Under their strong exponential size hypothesis, such circuits cannot compute $\operatorname{AND}_n$ in size $\exp(o(\sqrt{n})).$ Our results provide an upper bound on the complexity of $\textsc{PolEqv}(S_4)$ that is based on the minimal size of $\operatorname{AND}_n$ over $\operatorname{CC}[2,3,2]$-circuits.

Page Count
27 pages

Category
Computer Science:
Computational Complexity