GoAI: Enhancing AI Students' Learning Paths and Idea Generation via Graph of AI Ideas
By: Xian Gao , Zongyun Zhang , Ting Liu and more
Potential Business Impact:
Helps students learn AI and invent new ideas.
With the rapid advancement of artificial intelligence technology, AI students are confronted with a significant "information-to-innovation" gap: they must navigate through the rapidly expanding body of literature, trace the development of a specific research field, and synthesize various techniques into feasible innovative concepts. An additional critical step for students is to identify the necessary prerequisite knowledge and learning paths. Although many approaches based on large language models (LLMs) can summarize the content of papers and trace the development of a field through citations, these methods often overlook the prerequisite knowledge involved in the papers and the rich semantic information embedded in the citation relationships between papers. Such information reveals how methods are interrelated, built upon, extended, or challenged. To address these limitations, we propose GoAI, a tool for constructing educational knowledge graphs from AI research papers that leverages these graphs to plan personalized learning paths and support creative ideation. The nodes in the knowledge graph we have built include papers and the prerequisite knowledge, such as concepts, skills, and tools, that they involve; the edges record the semantic information of citations. When a student queries a specific paper, a beam search-based path search method can trace the current development trends of the field from the queried paper and plan a learning path toward cutting-edge objectives. The integrated Idea Studio guides students to clarify problem statements, compare alternative designs, and provide formative feedback on novelty, clarity, feasibility, and alignment with learning objectives.
Similar Papers
From Text to Network: Constructing a Knowledge Graph of Taiwan-Based China Studies Using Generative AI
Artificial Intelligence
AI helps organize and explore China studies research.
Constraint-Driven Small Language Models Based on Agent and OpenAlex Knowledge Graph: Mining Conceptual Pathways and Discovering Innovation Points in Academic Papers
Computation and Language
Finds new ideas in science papers faster.
"The Diagram is like Guardrails": Structuring GenAI-assisted Hypotheses Exploration with an Interactive Shared Representation
Human-Computer Interaction
Helps people explore ideas with AI.