Score: 0

Chatbots for Data Collection in Surveys: A Comparison of Four Theory-Based Interview Probes

Published: March 11, 2025 | arXiv ID: 2503.08582v1

By: Rune M. Jacobsen , Samuel Rhys Cox , Carla F. Griggio and more

Potential Business Impact:

Chatbots ask better questions in surveys.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Surveys are a widespread method for collecting data at scale, but their rigid structure often limits the depth of qualitative insights obtained. While interviews naturally yield richer responses, they are challenging to conduct across diverse locations and large participant pools. To partially bridge this gap, we investigate the potential of using LLM-based chatbots to support qualitative data collection through interview probes embedded in surveys. We assess four theory-based interview probes: descriptive, idiographic, clarifying, and explanatory. Through a split-plot study design (N=64), we compare the probes' impact on response quality and user experience across three key stages of HCI research: exploration, requirements gathering, and evaluation. Our results show that probes facilitate the collection of high-quality survey data, with specific probes proving effective at different research stages. We contribute practical and methodological implications for using chatbots as research tools to enrich qualitative data collection.

Country of Origin
🇩🇰 Denmark

Page Count
21 pages

Category
Computer Science:
Human-Computer Interaction