Score: 0

Quantitative Analysis of Deeply Quantized Tiny Neural Networks Robust to Adversarial Attacks

Published: March 12, 2025 | arXiv ID: 2503.08973v1

By: Idris Zakariyya , Ferheen Ayaz , Mounia Kharbouche-Harrari and more

Potential Business Impact:

Makes smart programs smaller and safer from tricks.

Business Areas:
Quantum Computing Science and Engineering

Reducing the memory footprint of Machine Learning (ML) models, especially Deep Neural Networks (DNNs), is imperative to facilitate their deployment on resource-constrained edge devices. However, a notable drawback of DNN models lies in their susceptibility to adversarial attacks, wherein minor input perturbations can deceive them. A primary challenge revolves around the development of accurate, resilient, and compact DNN models suitable for deployment on resource-constrained edge devices. This paper presents the outcomes of a compact DNN model that exhibits resilience against both black-box and white-box adversarial attacks. This work has achieved this resilience through training with the QKeras quantization-aware training framework. The study explores the potential of QKeras and an adversarial robustness technique, Jacobian Regularization (JR), to co-optimize the DNN architecture through per-layer JR methodology. As a result, this paper has devised a DNN model employing this co-optimization strategy based on Stochastic Ternary Quantization (STQ). Its performance was compared against existing DNN models in the face of various white-box and black-box attacks. The experimental findings revealed that, the proposed DNN model had small footprint and on average, it exhibited better performance than Quanos and DS-CNN MLCommons/TinyML (MLC/T) benchmarks when challenged with white-box and black-box attacks, respectively, on the CIFAR-10 image and Google Speech Commands audio datasets.

Page Count
17 pages

Category
Computer Science:
Machine Learning (CS)