AdvAD: Exploring Non-Parametric Diffusion for Imperceptible Adversarial Attacks
By: Jin Li , Ziqiang He , Anwei Luo and more
Potential Business Impact:
Makes computer vision models see fake things.
Imperceptible adversarial attacks aim to fool DNNs by adding imperceptible perturbation to the input data. Previous methods typically improve the imperceptibility of attacks by integrating common attack paradigms with specifically designed perception-based losses or the capabilities of generative models. In this paper, we propose Adversarial Attacks in Diffusion (AdvAD), a novel modeling framework distinct from existing attack paradigms. AdvAD innovatively conceptualizes attacking as a non-parametric diffusion process by theoretically exploring basic modeling approach rather than using the denoising or generation abilities of regular diffusion models requiring neural networks. At each step, much subtler yet effective adversarial guidance is crafted using only the attacked model without any additional network, which gradually leads the end of diffusion process from the original image to a desired imperceptible adversarial example. Grounded in a solid theoretical foundation of the proposed non-parametric diffusion process, AdvAD achieves high attack efficacy and imperceptibility with intrinsically lower overall perturbation strength. Additionally, an enhanced version AdvAD-X is proposed to evaluate the extreme of our novel framework under an ideal scenario. Extensive experiments demonstrate the effectiveness of the proposed AdvAD and AdvAD-X. Compared with state-of-the-art imperceptible attacks, AdvAD achieves an average of 99.9$\%$ (+17.3$\%$) ASR with 1.34 (-0.97) $l_2$ distance, 49.74 (+4.76) PSNR and 0.9971 (+0.0043) SSIM against four prevalent DNNs with three different architectures on the ImageNet-compatible dataset. Code is available at https://github.com/XianguiKang/AdvAD.
Similar Papers
ADT: Tuning Diffusion Models with Adversarial Supervision
CV and Pattern Recognition
Makes AI art look more real and less weird.
Reconstruction-Free Anomaly Detection with Diffusion Models
CV and Pattern Recognition
Finds weird things in pictures much faster.
Embedding Hidden Adversarial Capabilities in Pre-Trained Diffusion Models
Machine Learning (CS)
Makes AI art trick other AIs into making mistakes.