MarineGym: A High-Performance Reinforcement Learning Platform for Underwater Robotics
By: Shuguang Chu , Zebin Huang , Yutong Li and more
Potential Business Impact:
Teaches underwater robots to learn faster.
This work presents the MarineGym, a high-performance reinforcement learning (RL) platform specifically designed for underwater robotics. It aims to address the limitations of existing underwater simulation environments in terms of RL compatibility, training efficiency, and standardized benchmarking. MarineGym integrates a proposed GPU-accelerated hydrodynamic plugin based on Isaac Sim, achieving a rollout speed of 250,000 frames per second on a single NVIDIA RTX 3060 GPU. It also provides five models of unmanned underwater vehicles (UUVs), multiple propulsion systems, and a set of predefined tasks covering core underwater control challenges. Additionally, the DR toolkit allows flexible adjustments of simulation and task parameters during training to improve Sim2Real transfer. Further benchmark experiments demonstrate that MarineGym improves training efficiency over existing platforms and supports robust policy adaptation under various perturbations. We expect this platform could drive further advancements in RL research for underwater robotics. For more details about MarineGym and its applications, please visit our project page: https://marine-gym.com/.
Similar Papers
Scaling Multi Agent Reinforcement Learning for Underwater Acoustic Tracking via Autonomous Vehicles
Robotics
Trains robot submarines to track many fast things.
A Robot Simulation Environment for Virtual Reality Enhanced Underwater Manipulation and Seabed Intervention Tasks
Robotics
Lets robots practice swimming and grabbing underwater.
OceanSim: A GPU-Accelerated Underwater Robot Perception Simulation Framework
Robotics
Makes underwater robots see better in murky water.