Chat-TS: Enhancing Multi-Modal Reasoning Over Time-Series and Natural Language Data
By: Paul Quinlan, Qingguo Li, Xiaodan Zhu
Potential Business Impact:
Lets computers understand charts and words together.
Time-series analysis is critical for a wide range of fields such as healthcare, finance, transportation, and energy, among many others. The practical applications often involve analyzing time-series data alongside contextual information in the form of natural language to support informed decisions. However, current time-series models are limited in their ability to perform reasoning that involves both time-series and their textual content. In this work, we address this gap by introducing \textit{Chat-TS}, a large language model (LLM) based framework, designed to support reasoning over time series and textual data. Unlike traditional models, Chat-TS integrates time-series tokens into LLMs' vocabulary, enhancing its reasoning ability over both modalities without compromising the core natural language capabilities, enabling practical analysis and reasoning across modalities. To support learning and evaluation in this setup, we contribute new datasets: the \textit{TS Instruct Training Dataset} which pairs diverse time-series data with relevant text instructions and responses for instruction tuning, the \textit{TS Instruct Question and Answer (QA) Gold Dataset} which provides multiple-choice questions designed to evaluate multimodal reasoning, and a \textit{TS Instruct Quantitative Probing Set} which contains a small subset of the TS Instruct QA tasks alongside math and decision-making questions for LLM evaluation. We designed a training strategy to preserve the inherent reasoning capabilities of LLMs while augmenting them for time-series reasoning. Experiments show that Chat-TS achieves state-of-the-art performance in multi-modal reasoning tasks by maintaining strong natural language proficiency while improving time-series reasoning. ~\footnote{To ensure replicability and facilitate future research, all models, datasets, and code will be available at [\texttt{Github-URL}].}
Similar Papers
Time-MQA: Time Series Multi-Task Question Answering with Context Enhancement
Computation and Language
Lets computers answer questions about time data.
TimeSense:Making Large Language Models Proficient in Time-Series Analysis
Computation and Language
Helps computers understand time data better.
MLLM4TS: Leveraging Vision and Multimodal Language Models for General Time-Series Analysis
Machine Learning (CS)
Helps computers find patterns in data charts.