Score: 0

Adaptive model predictive control for traffic signal timing with unknown demand and parameters

Published: March 13, 2025 | arXiv ID: 2503.10934v1

By: Zhexian Li, Ketan Savla

Potential Business Impact:

Smart traffic lights learn to fix traffic jams.

Business Areas:
Autonomous Vehicles Transportation

This paper designs traffic signal control policies for a network of signalized intersections without knowing the demand and parameters. Within a model predictive control (MPC) framework, control policies consist of an algorithm that estimates parameters and a one-step MPC that computes control inputs using estimated parameters. The algorithm switches between different terminal sets of the MPC to explore different regions of the state space, where different parameters are identifiable. The one-step MPC minimizes a cost that approximates the sum of squares of all the queue lengths within a constant and does not require demand information. We show that the algorithm can estimate parameters exactly in finite time, and the one-step MPC renders maximum throughput in terms of input-to-state practical stability. Simulations indicate better transient performance regarding queue lengths under our proposed policies than existing ones.

Country of Origin
🇺🇸 United States

Page Count
8 pages

Category
Electrical Engineering and Systems Science:
Systems and Control