Score: 1

FG-DFPN: Flow Guided Deformable Frame Prediction Network

Published: March 14, 2025 | arXiv ID: 2503.11343v1

By: M. Akın Yılmaz, Ahmet Bilican, A. Murat Tekalp

Potential Business Impact:

Makes videos play smoother by guessing next frames.

Business Areas:
Image Recognition Data and Analytics, Software

Video frame prediction remains a fundamental challenge in computer vision with direct implications for autonomous systems, video compression, and media synthesis. We present FG-DFPN, a novel architecture that harnesses the synergy between optical flow estimation and deformable convolutions to model complex spatio-temporal dynamics. By guiding deformable sampling with motion cues, our approach addresses the limitations of fixed-kernel networks when handling diverse motion patterns. The multi-scale design enables FG-DFPN to simultaneously capture global scene transformations and local object movements with remarkable precision. Our experiments demonstrate that FG-DFPN achieves state-of-the-art performance on eight diverse MPEG test sequences, outperforming existing methods by 1dB PSNR while maintaining competitive inference speeds. The integration of motion cues with adaptive geometric transformations makes FG-DFPN a promising solution for next-generation video processing systems that require high-fidelity temporal predictions. The model and instructions to reproduce our results will be released at: https://github.com/KUIS-AI-Tekalp-Research Group/frame-prediction

Country of Origin
🇹🇷 Turkey

Repos / Data Links

Page Count
5 pages

Category
Electrical Engineering and Systems Science:
Image and Video Processing