Score: 0

Integrating Dynamical Systems Modeling with Spatiotemporal scRNA-seq Data Analysis

Published: March 14, 2025 | arXiv ID: 2503.11347v2

By: Zhenyi Zhang , Yuhao Sun , Qiangwei Peng and more

Potential Business Impact:

Tracks how cells change over time to understand life.

Business Areas:
Bioinformatics Biotechnology, Data and Analytics, Science and Engineering

Understanding the dynamic nature of biological systems is fundamental to deciphering cellular behavior, developmental processes, and disease progression. Single-cell RNA sequencing (scRNA-seq) has provided static snapshots of gene expression, offering valuable insights into cellular states at a single time point. Recent advancements in temporally resolved scRNA-seq, spatial transcriptomics (ST), and time-series spatial transcriptomics (temporal-ST) have further revolutionized our ability to study the spatiotemporal dynamics of individual cells. These technologies, when combined with computational frameworks such as Markov chains, stochastic differential equations (SDEs), and generative models like optimal transport and Schr\"odinger bridges, enable the reconstruction of dynamic cellular trajectories and cell fate decisions. This review discusses how these dynamical system approaches offer new opportunities to model and infer cellular dynamics from a systematic perspective.

Country of Origin
🇨🇳 China

Page Count
44 pages

Category
Quantitative Biology:
Quantitative Methods