Score: 0

EDEA: Efficient Dual-Engine Accelerator for Depthwise Separable Convolution with Direct Data Transfer

Published: March 12, 2025 | arXiv ID: 2503.11707v1

By: Yi Chen , Jie Lou , Malte Wabnitz and more

Potential Business Impact:

Makes phones smarter, faster, and use less power.

Business Areas:
DSP Hardware

Depthwise separable convolution (DSC) has emerged as a crucial technique, especially for resource-constrained devices. In this paper, we propose a dual-engine for the DSC hardware accelerator, which enables the full utilization of depthwise convolution (DWC) and pointwise convolution (PWC) processing elements (PEs) in all DSC layers. To determine the optimal dataflow, data reuse, and configuration of the target architecture, we conduct a design space exploration using MobileNetV1 with the CIFAR10 dataset. In the architecture, we introduce an additional non-convolutional unit, which merges the dequantization, batch normalization (BN), ReLU, and quantization between DWC and PWC into a simple fixed-point multiplication and addition operation. This also reduces the intermediate data access between the DWC and PWC, enabling streaming operation and reducing latency. The proposed DSC dual-engine accelerator is implemented using the 22nm FDSOI technology from GlobalFoundries, occupying an area of 0.58 $mm^2$. After signoff, it can operate at 1 GHz at TT corner, achieving a peak energy efficiency of 13.43 TOPS/W with a throughput of 973.55 GOPS with 8-bit precision. The average energy efficiency of all DSC layers on MobileNetV1 is 11.13 TOPS/W, demonstrating substantial hardware efficiency improvements for DSC-based applications.

Country of Origin
🇩🇪 Germany

Page Count
6 pages

Category
Computer Science:
Hardware Architecture