Variance-Dependent Regret Lower Bounds for Contextual Bandits
By: Jiafan He, Quanquan Gu
Potential Business Impact:
Helps computers learn better with less guessing.
Variance-dependent regret bounds for linear contextual bandits, which improve upon the classical $\tilde{O}(d\sqrt{K})$ regret bound to $\tilde{O}(d\sqrt{\sum_{k=1}^K\sigma_k^2})$, where $d$ is the context dimension, $K$ is the number of rounds, and $\sigma^2_k$ is the noise variance in round $k$, has been widely studied in recent years. However, most existing works focus on the regret upper bounds instead of lower bounds. To our knowledge, the only lower bound is from Jia et al. (2024), which proved that for any eluder dimension $d_{\textbf{elu}}$ and total variance budget $\Lambda$, there exists an instance with $\sum_{k=1}^K\sigma_k^2\leq \Lambda$ for which any algorithm incurs a variance-dependent lower bound of $\Omega(\sqrt{d_{\textbf{elu}}\Lambda})$. However, this lower bound has a $\sqrt{d}$ gap with existing upper bounds. Moreover, it only considers a fixed total variance budget $\Lambda$ and does not apply to a general variance sequence $\{\sigma_1^2,\ldots,\sigma_K^2\}$. In this paper, to overcome the limitations of Jia et al. (2024), we consider the general variance sequence under two settings. For a prefixed sequence, where the entire variance sequence is revealed to the learner at the beginning of the learning process, we establish a variance-dependent lower bound of $\Omega(d \sqrt{\sum_{k=1}^K\sigma_k^2 }/\log K)$ for linear contextual bandits. For an adaptive sequence, where an adversary can generate the variance $\sigma_k^2$ in each round $k$ based on historical observations, we show that when the adversary must generate $\sigma_k^2$ before observing the decision set $\mathcal{D}_k$, a similar lower bound of $\Omega(d\sqrt{ \sum_{k=1}^K\sigma_k^2} /\log^6(dK))$ holds. In both settings, our results match the upper bounds of the SAVE algorithm (Zhao et al., 2023) up to logarithmic factors.
Similar Papers
Neural Variance-aware Dueling Bandits with Deep Representation and Shallow Exploration
Machine Learning (CS)
Helps computers learn better by guessing wisely.
Improved Regret Bounds for Linear Bandits with Heavy-Tailed Rewards
Machine Learning (CS)
Helps computers learn faster with unpredictable rewards.
An Improved Algorithm for Adversarial Linear Contextual Bandits via Reduction
Machine Learning (CS)
Helps computers learn best choices faster.