Diffusion-Based Forecasting for Uncertainty-Aware Model Predictive Control
By: Stelios Zarifis, Ioannis Kordonis, Petros Maragos
Potential Business Impact:
Helps batteries make more money from electricity.
We propose Diffusion-Informed Model Predictive Control (D-I MPC), a generic framework for uncertainty-aware prediction and decision-making in partially observable stochastic systems by integrating diffusion-based time series forecasting models in Model Predictive Control algorithms. In our approach, a diffusion-based time series forecasting model is used to probabilistically estimate the evolution of the system's stochastic components. These forecasts are then incorporated into MPC algorithms to estimate future trajectories and optimize action selection under the uncertainty of the future. We evaluate the framework on the task of energy arbitrage, where a Battery Energy Storage System participates in the day-ahead electricity market of the New York state. Experimental results indicate that our model-based approach with a diffusion-based forecaster significantly outperforms both implementations with classical forecasting methods and model-free reinforcement learning baselines.
Similar Papers
Diffusion-assisted Model Predictive Control Optimization for Power System Real-Time Operation
Systems and Control
Improves power grid control with better weather forecasts.
Stochastic Model Predictive Control of Charging Energy Hubs with Conformal Prediction
Systems and Control
Saves money charging electric cars with sun.
Distributed Model Predictive Control for Dynamic Cooperation of Multi-Agent Systems
Systems and Control
Lets robots work together to finish tasks.