SV4D 2.0: Enhancing Spatio-Temporal Consistency in Multi-View Video Diffusion for High-Quality 4D Generation
By: Chun-Han Yao , Yiming Xie , Vikram Voleti and more
Potential Business Impact:
Makes 3D objects move realistically from videos.
We present Stable Video 4D 2.0 (SV4D 2.0), a multi-view video diffusion model for dynamic 3D asset generation. Compared to its predecessor SV4D, SV4D 2.0 is more robust to occlusions and large motion, generalizes better to real-world videos, and produces higher-quality outputs in terms of detail sharpness and spatio-temporal consistency. We achieve this by introducing key improvements in multiple aspects: 1) network architecture: eliminating the dependency of reference multi-views and designing blending mechanism for 3D and frame attention, 2) data: enhancing quality and quantity of training data, 3) training strategy: adopting progressive 3D-4D training for better generalization, and 4) 4D optimization: handling 3D inconsistency and large motion via 2-stage refinement and progressive frame sampling. Extensive experiments demonstrate significant performance gain by SV4D 2.0 both visually and quantitatively, achieving better detail (-14\% LPIPS) and 4D consistency (-44\% FV4D) in novel-view video synthesis and 4D optimization (-12\% LPIPS and -24\% FV4D) compared to SV4D. Project page: https://sv4d20.github.io.
Similar Papers
Stable Part Diffusion 4D: Multi-View RGB and Kinematic Parts Video Generation
CV and Pattern Recognition
Makes videos of moving objects with their parts.
Splat4D: Diffusion-Enhanced 4D Gaussian Splatting for Temporally and Spatially Consistent Content Creation
CV and Pattern Recognition
Makes 3D videos look real and move smoothly.
Free4D: Tuning-free 4D Scene Generation with Spatial-Temporal Consistency
CV and Pattern Recognition
Makes one picture into a moving 3D scene.