Prompt-Guided Dual-Path UNet with Mamba for Medical Image Segmentation
By: Shaolei Zhang , Jinyan Liu , Tianyi Qian and more
Potential Business Impact:
Helps doctors see tiny details in medical pictures.
Convolutional neural networks (CNNs) and transformers are widely employed in constructing UNet architectures for medical image segmentation tasks. However, CNNs struggle to model long-range dependencies, while transformers suffer from quadratic computational complexity. Recently, Mamba, a type of State Space Models, has gained attention for its exceptional ability to model long-range interactions while maintaining linear computational complexity. Despite the emergence of several Mamba-based methods, they still present the following limitations: first, their network designs generally lack perceptual capabilities for the original input data; second, they primarily focus on capturing global information, while often neglecting local details. To address these challenges, we propose a prompt-guided CNN-Mamba dual-path UNet, termed PGM-UNet, for medical image segmentation. Specifically, we introduce a prompt-guided residual Mamba module that adaptively extracts dynamic visual prompts from the original input data, effectively guiding Mamba in capturing global information. Additionally, we design a local-global information fusion network, comprising a local information extraction module, a prompt-guided residual Mamba module, and a multi-focus attention fusion module, which effectively integrates local and global information. Furthermore, inspired by Kolmogorov-Arnold Networks (KANs), we develop a multi-scale information extraction module to capture richer contextual information without altering the resolution. We conduct extensive experiments on the ISIC-2017, ISIC-2018, DIAS, and DRIVE. The results demonstrate that the proposed method significantly outperforms state-of-the-art approaches in multiple medical image segmentation tasks.
Similar Papers
HyM-UNet: Synergizing Local Texture and Global Context via Hybrid CNN-Mamba Architecture for Medical Image Segmentation
CV and Pattern Recognition
Helps doctors find sickness in body scans.
KM-UNet KAN Mamba UNet for medical image segmentation
Image and Video Processing
Helps doctors find sickness in X-rays faster.
From Claims to Evidence: A Unified Framework and Critical Analysis of CNN vs. Transformer vs. Mamba in Medical Image Segmentation
Image and Video Processing
Helps doctors see inside bodies better.