Score: 2

Guidelines For The Choice Of The Baseline in XAI Attribution Methods

Published: March 25, 2025 | arXiv ID: 2503.19813v1

By: Cristian Morasso , Giorgio Dolci , Ilaria Boscolo Galazzo and more

Potential Business Impact:

Helps AI explain its decisions to people.

Business Areas:
Predictive Analytics Artificial Intelligence, Data and Analytics, Software

Given the broad adoption of artificial intelligence, it is essential to provide evidence that AI models are reliable, trustable, and fair. To this end, the emerging field of eXplainable AI develops techniques to probe such requirements, counterbalancing the hype pushing the pervasiveness of this technology. Among the many facets of this issue, this paper focuses on baseline attribution methods, aiming at deriving a feature attribution map at the network input relying on a "neutral" stimulus usually called "baseline". The choice of the baseline is crucial as it determines the explanation of the network behavior. In this framework, this paper has the twofold goal of shedding light on the implications of the choice of the baseline and providing a simple yet effective method for identifying the best baseline for the task. To achieve this, we propose a decision boundary sampling method, since the baseline, by definition, lies on the decision boundary, which naturally becomes the search domain. Experiments are performed on synthetic examples and validated relying on state-of-the-art methods. Despite being limited to the experimental scope, this contribution is relevant as it offers clear guidelines and a simple proxy for baseline selection, reducing ambiguity and enhancing deep models' reliability and trust.

Country of Origin
🇮🇹 Italy

Repos / Data Links

Page Count
16 pages

Category
Computer Science:
Artificial Intelligence