Capacity-Constrained Online Learning with Delays: Scheduling Frameworks and Regret Trade-offs
By: Alexander Ryabchenko, Idan Attias, Daniel M. Roy
Potential Business Impact:
Makes computers learn faster with delayed information.
We study online learning with oblivious losses and delays under a novel ``capacity constraint'' that limits how many past rounds can be tracked simultaneously for delayed feedback. Under ``clairvoyance'' (i.e., delay durations are revealed upfront each round) and/or ``preemptibility'' (i.e., we can stop tracking previously chosen round feedback), we establish matching upper and lower bounds (up to logarithmic terms) on achievable regret, characterizing the ``optimal capacity'' needed to match the minimax rates of classical delayed online learning, which implicitly assume unlimited capacity. Our algorithms achieve minimax-optimal regret across all capacity levels, with performance gracefully degrading under suboptimal capacity. For $K$ actions and total delay $D$ over $T$ rounds, under clairvoyance and assuming capacity $C = \Omega(\log(T))$, we achieve regret $\widetilde{\Theta}(\sqrt{TK + DK/C + D\log(K)})$ for bandits and $\widetilde{\Theta}(\sqrt{(D+T)\log(K)})$ for full-information feedback. When replacing clairvoyance with preemptibility, we require a known maximum delay bound $d_{\max}$, adding ${\widetilde{O}(d_{\max})}$ to the regret. For fixed delays $d$ (i.e., $D=Td$), the minimax regret is $\Theta(\sqrt{TK(1+d/C)+Td\log(K)})$ and the optimal capacity is $\Theta(\min\{K/\log(K),d\})$ in the bandit setting, while in the full-information feedback setting, the minimax regret is $\Theta(\sqrt{T(d+1)\log(K)})$ and the optimal capacity is $\Theta(1)$. For round-dependent and fixed delays, our upper bounds are achieved using novel preemptive and non-preemptive scheduling policies, based on Pareto-distributed proxy delays, and batching techniques, respectively. Crucially, our work unifies delayed bandits, label-efficient learning, and online scheduling frameworks, demonstrating that robust online learning under delayed feedback is possible with surprisingly modest tracking capacity.
Similar Papers
Regret Bounds for Robust Online Decision Making
Machine Learning (CS)
Helps computers learn from uncertain information.
Exploiting Curvature in Online Convex Optimization with Delayed Feedback
Machine Learning (CS)
Improves computer learning with delayed information.
Near-Optimal Regret-Queue Length Tradeoff in Online Learning for Two-Sided Markets
Machine Learning (CS)
Smarter system matches people and jobs faster.