Global vs. s-t Vertex Connectivity Beyond Sequential: Almost-Perfect Reductions & Near-Optimal Separations
By: Joakim Blikstad , Yonggang Jiang , Sagnik Mukhopadhyay and more
Potential Business Impact:
Makes computers find network weak spots faster.
A recent breakthrough by [LNPSY STOC'21] showed that solving s-t vertex connectivity is sufficient (up to polylogarithmic factors) to solve (global) vertex connectivity in the sequential model. This raises a natural question: What is the relationship between s-t and global vertex connectivity in other computational models? In this paper, we demonstrate that the connection between global and s-t variants behaves very differently across computational models: 1.In parallel and distributed models, we obtain almost tight reductions from global to s-t vertex connectivity. In PRAM, this leads to a $n^{\omega+o(1)}$-work and $n^{o(1)}$-depth algorithm for vertex connectivity, improving over the 35-year-old $\tilde O(n^{\omega+1})$-work $O(\log^2n)$-depth algorithm by [LLW FOCS'86], where $\omega$ is the matrix multiplication exponent and $n$ is the number of vertices. In CONGEST, the reduction implies the first sublinear-round (when the diameter is moderately small) vertex connectivity algorithm. This answers an open question in [JM STOC'23]. 2. In contrast, we show that global vertex connectivity is strictly harder than s-t vertex connectivity in the two-party communication setting, requiring $\tilde \Theta (n^{1.5})$ bits of communication. The s-t variant was known to be solvable in $\tilde O(n)$ communication [BvdBEMN FOCS'22]. Our results resolve open problems raised by [MN STOC'20, BvdBEMN FOCS'22, AS SOSA'23]. At the heart of our results is a new graph decomposition framework we call \emph{common-neighborhood clustering}, which can be applied in multiple models. Finally, we observe that global vertex connectivity cannot be solved without using s-t vertex connectivity, by proving an s-t to global reduction in dense graphs, in the PRAM and communication models.
Similar Papers
Parallel Small Vertex Connectivity in Near-Linear Work and Polylogarithmic Depth
Data Structures and Algorithms
Finds ways to break computer networks.
Directed and Undirected Vertex Connectivity Problems are Equivalent for Dense Graphs
Data Structures and Algorithms
Makes computer networks safer and faster.
Approximating Directed Connectivity in Almost-Linear Time
Data Structures and Algorithms
Finds the weakest links in computer networks faster.