A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI)
By: A. Candito , A. Dragan , R. Holbrey and more
Potential Business Impact:
Helps doctors find cancer faster using body scans.
Background: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognized cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal. Methods: We developed an automated deep-learning pipeline based on a 3D patch-based Residual U-Net architecture that localizes and delineates these anatomical structures on WB-DWI. The algorithm was trained using "soft-labels" (non-binary segmentations) derived from a computationally intensive atlas-based approach. For training and validation, we employed a multi-center WB-DWI dataset comprising 532 scans from patients with Advanced Prostate Cancer (APC) or Multiple Myeloma (MM), with testing on 45 patients. Results: Our weakly-supervised deep learning model achieved an average dice score/precision/recall of 0.66/0.6/0.73 for skeletal delineations, 0.8/0.79/0.81 for internal organs, and 0.85/0.79/0.94 for spinal canal, with surface distances consistently below 3 mm. Relative median ADC and log-transformed volume differences between automated and manual expert-defined full-body delineations were below 10% and 4%, respectively. The computational time for generating probability maps was 12x faster than the atlas-based registration algorithm (25 s vs. 5 min). An experienced radiologist rated the model's accuracy "good" or "excellent" on test datasets. Conclusion: Our model offers fast and reproducible probability maps for localizing and delineating body regions on WB-DWI, enabling ADC and TDV quantification, potentially supporting clinicians in disease staging and treatment response assessment.
Similar Papers
Signal-based AI-driven software solution for automated quantification of metastatic bone disease and treatment response assessment using Whole-Body Diffusion-Weighted MRI (WB-DWI) biomarkers in Advanced Prostate Cancer
Machine Learning (CS)
Helps doctors find bone cancer spread faster.
AI and Deep Learning for Automated Segmentation and Quantitative Measurement of Spinal Structures in MRI
Image and Video Processing
Helps doctors measure spines faster and better.
Deep Learning-Based Automated Workflow for Accurate Segmentation and Measurement of Abdominal Organs in CT Scans
Image and Video Processing
Measures body organs on scans automatically and accurately.