Artificial Intelligence-Assisted Prostate Cancer Diagnosis for Reduced Use of Immunohistochemistry
By: Anders Blilie , Nita Mulliqi , Xiaoyi Ji and more
Potential Business Impact:
Helps doctors find cancer faster, saving time.
Prostate cancer diagnosis heavily relies on histopathological evaluation, which is subject to variability. While immunohistochemical staining (IHC) assists in distinguishing benign from malignant tissue, it involves increased work, higher costs, and diagnostic delays. Artificial intelligence (AI) presents a promising solution to reduce reliance on IHC by accurately classifying atypical glands and borderline morphologies in hematoxylin & eosin (H&E) stained tissue sections. In this study, we evaluated an AI model's ability to minimize IHC use without compromising diagnostic accuracy by retrospectively analyzing prostate core needle biopsies from routine diagnostics at three different pathology sites. These cohorts were composed exclusively of difficult cases where the diagnosing pathologists required IHC to finalize the diagnosis. The AI model demonstrated area under the curve values of 0.951-0.993 for detecting cancer in routine H&E-stained slides. Applying sensitivity-prioritized diagnostic thresholds reduced the need for IHC staining by 44.4%, 42.0%, and 20.7% in the three cohorts investigated, without a single false negative prediction. This AI model shows potential for optimizing IHC use, streamlining decision-making in prostate pathology, and alleviating resource burdens.
Similar Papers
Cross-Modality Learning for Predicting IHC Biomarkers from H&E-Stained Whole-Slide Images
Image and Video Processing
Predicts cancer protein spots from regular tissue pictures.
Building Trust in Virtual Immunohistochemistry: Automated Assessment of Image Quality
CV and Pattern Recognition
Makes fake stain images as good as real ones.
Deep learning-enabled virtual multiplexed immunostaining of label-free tissue for vascular invasion assessment
Medical Physics
Lets doctors see hidden cancer details on slides.