Task-based Loss Functions in Computer Vision: A Comprehensive Review
By: Omar Elharrouss , Yasir Mahmood , Yassine Bechqito and more
Potential Business Impact:
Teaches computers to learn better from mistakes.
Loss functions are at the heart of deep learning, shaping how models learn and perform across diverse tasks. They are used to quantify the difference between predicted outputs and ground truth labels, guiding the optimization process to minimize errors. Selecting the right loss function is critical, as it directly impacts model convergence, generalization, and overall performance across various applications, from computer vision to time series forecasting. This paper presents a comprehensive review of loss functions, covering fundamental metrics like Mean Squared Error and Cross-Entropy to advanced functions such as Adversarial and Diffusion losses. We explore their mathematical foundations, impact on model training, and strategic selection for various applications, including computer vision (Discriminative and generative), tabular data prediction, and time series forecasting. For each of these categories, we discuss the most used loss functions in the recent advancements of deep learning techniques. Also, this review explore the historical evolution, computational efficiency, and ongoing challenges in loss function design, underlining the need for more adaptive and robust solutions. Emphasis is placed on complex scenarios involving multi-modal data, class imbalances, and real-world constraints. Finally, we identify key future directions, advocating for loss functions that enhance interpretability, scalability, and generalization, leading to more effective and resilient deep learning models.
Similar Papers
Loss Functions in Diffusion Models: A Comparative Study
Machine Learning (CS)
Makes AI create better pictures and understand them.
DL101 Neural Network Outputs and Loss Functions
Machine Learning (CS)
Helps computers learn better by picking the right math.
Toward Better Optimization of Low-Dose CT Enhancement: A Critical Analysis of Loss Functions and Image Quality Assessment Metrics
CV and Pattern Recognition
Cleans up blurry medical scans for better health checks.