Multimodal Agricultural Agent Architecture (MA3): A New Paradigm for Intelligent Agricultural Decision-Making
By: Zhuoning Xu , Jian Xu , Mingqing Zhang and more
Potential Business Impact:
Helps farmers grow more food with less risk.
As a strategic pillar industry for human survival and development, modern agriculture faces dual challenges: optimizing production efficiency and achieving sustainable development. Against the backdrop of intensified climate change leading to frequent extreme weather events, the uncertainty risks in agricultural production systems are increasing exponentially. To address these challenges, this study proposes an innovative \textbf{M}ultimodal \textbf{A}gricultural \textbf{A}gent \textbf{A}rchitecture (\textbf{MA3}), which leverages cross-modal information fusion and task collaboration mechanisms to achieve intelligent agricultural decision-making. This study constructs a multimodal agricultural agent dataset encompassing five major tasks: classification, detection, Visual Question Answering (VQA), tool selection, and agent evaluation. We propose a unified backbone for sugarcane disease classification and detection tools, as well as a sugarcane disease expert model. By integrating an innovative tool selection module, we develop a multimodal agricultural agent capable of effectively performing tasks in classification, detection, and VQA. Furthermore, we introduce a multi-dimensional quantitative evaluation framework and conduct a comprehensive assessment of the entire architecture over our evaluation dataset, thereby verifying the practicality and robustness of MA3 in agricultural scenarios. This study provides new insights and methodologies for the development of agricultural agents, holding significant theoretical and practical implications. Our source code and dataset will be made publicly available upon acceptance.
Similar Papers
AgriDoctor: A Multimodal Intelligent Assistant for Agriculture
CV and Pattern Recognition
Helps farmers find plant sicknesses using pictures and words.
A Multimodal Conversational Assistant for the Characterization of Agricultural Plots from Geospatial Open Data
Artificial Intelligence
Lets farmers ask questions about crops using normal words.
AgroAskAI: A Multi-Agentic AI Framework for Supporting Smallholder Farmers' Enquiries Globally
Artificial Intelligence
Helps farmers make smart choices about changing weather.