Maternal and Fetal Health Status Assessment by Using Machine Learning on Optical 3D Body Scans
By: Ruting Cheng , Yijiang Zheng , Boyuan Feng and more
Potential Business Impact:
Scans pregnant bodies to predict baby health problems.
Monitoring maternal and fetal health during pregnancy is crucial for preventing adverse outcomes. While tests such as ultrasound scans offer high accuracy, they can be costly and inconvenient. Telehealth and more accessible body shape information provide pregnant women with a convenient way to monitor their health. This study explores the potential of 3D body scan data, captured during the 18-24 gestational weeks, to predict adverse pregnancy outcomes and estimate clinical parameters. We developed a novel algorithm with two parallel streams which are used for extract body shape features: one for supervised learning to extract sequential abdominal circumference information, and another for unsupervised learning to extract global shape descriptors, alongside a branch for demographic data. Our results indicate that 3D body shape can assist in predicting preterm labor, gestational diabetes mellitus (GDM), gestational hypertension (GH), and in estimating fetal weight. Compared to other machine learning models, our algorithm achieved the best performance, with prediction accuracies exceeding 88% and fetal weight estimation accuracy of 76.74% within a 10% error margin, outperforming conventional anthropometric methods by 22.22%.
Similar Papers
MvBody: Multi-View-Based Hybrid Transformer Using Optical 3D Body Scan for Explainable Cesarean Section Prediction
CV and Pattern Recognition
Predicts C-section risk using body scans and health data.
AGE-US: automated gestational age estimation based on fetal ultrasound images
Image and Video Processing
Helps doctors guess baby's age more accurately.
Predicting Anthropometric Body Composition Variables Using 3D Optical Imaging and Machine Learning
Machine Learning (CS)
Measures body fat and muscle from 3D pictures.