Score: 3

Learning Fine-grained Domain Generalization via Hyperbolic State Space Hallucination

Published: April 10, 2025 | arXiv ID: 2504.08020v1

By: Qi Bi , Jingjun Yi , Haolan Zhan and more

Potential Business Impact:

Teaches computers to see tiny details in new pictures.

Business Areas:
Visual Search Internet Services

Fine-grained domain generalization (FGDG) aims to learn a fine-grained representation that can be well generalized to unseen target domains when only trained on the source domain data. Compared with generic domain generalization, FGDG is particularly challenging in that the fine-grained category can be only discerned by some subtle and tiny patterns. Such patterns are particularly fragile under the cross-domain style shifts caused by illumination, color and etc. To push this frontier, this paper presents a novel Hyperbolic State Space Hallucination (HSSH) method. It consists of two key components, namely, state space hallucination (SSH) and hyperbolic manifold consistency (HMC). SSH enriches the style diversity for the state embeddings by firstly extrapolating and then hallucinating the source images. Then, the pre- and post- style hallucinate state embeddings are projected into the hyperbolic manifold. The hyperbolic state space models the high-order statistics, and allows a better discernment of the fine-grained patterns. Finally, the hyperbolic distance is minimized, so that the impact of style variation on fine-grained patterns can be eliminated. Experiments on three FGDG benchmarks demonstrate its state-of-the-art performance.

Country of Origin
πŸ‡¨πŸ‡³ πŸ‡ΊπŸ‡Έ China, United States

Repos / Data Links

Page Count
9 pages

Category
Computer Science:
CV and Pattern Recognition