Should you use LLMs to simulate opinions? Quality checks for early-stage deliberation
By: Terrence Neumann, Maria De-Arteaga, Sina Fazelpour
Potential Business Impact:
Tests if AI opinions are trustworthy for surveys.
The emergent capabilities of large language models (LLMs) have prompted interest in using them as surrogates for human subjects in opinion surveys. However, prior evaluations of LLM-based opinion simulation have relied heavily on costly, domain-specific survey data, and mixed empirical results leave their reliability in question. To enable cost-effective, early-stage evaluation, we introduce a quality control assessment designed to test the viability of LLM-simulated opinions on Likert-scale tasks without requiring large-scale human data for validation. This assessment comprises two key tests: \emph{logical consistency} and \emph{alignment with stakeholder expectations}, offering a low-cost, domain-adaptable validation tool. We apply our quality control assessment to an opinion simulation task relevant to AI-assisted content moderation and fact-checking workflows -- a socially impactful use case -- and evaluate seven LLMs using a baseline prompt engineering method (backstory prompting), as well as fine-tuning and in-context learning variants. None of the models or methods pass the full assessment, revealing several failure modes. We conclude with a discussion of the risk management implications and release \texttt{TopicMisinfo}, a benchmark dataset with paired human and LLM annotations simulated by various models and approaches, to support future research.
Similar Papers
An Analysis of Large Language Models for Simulating User Responses in Surveys
Computation and Language
Helps computers understand many different opinions.
Synthesizing Public Opinions with LLMs: Role Creation, Impacts, and the Future to eDemorcacy
Computation and Language
Makes computers guess what people think better.
Hypothesis Testing for Quantifying LLM-Human Misalignment in Multiple Choice Settings
Computers and Society
Tests if computer brains copy people's choices.