Hierarchical Relation-augmented Representation Generalization for Few-shot Action Recognition
By: Hongyu Qu , Ling Xing , Jiachao Zhang and more
Potential Business Impact:
Teaches computers to learn new actions from few examples.
Few-shot action recognition (FSAR) aims to recognize novel action categories with few exemplars. Existing methods typically learn frame-level representations for each video by designing inter-frame temporal modeling strategies or inter-video interaction at the coarse video-level granularity. However, they treat each episode task in isolation and neglect fine-grained temporal relation modeling between videos, thus failing to capture shared fine-grained temporal patterns across videos and reuse temporal knowledge from historical tasks. In light of this, we propose HR2G-shot, a Hierarchical Relation-augmented Representation Generalization framework for FSAR, which unifies three types of relation modeling (inter-frame, inter-video, and inter-task) to learn task-specific temporal patterns from a holistic view. Going beyond conducting inter-frame temporal interactions, we further devise two components to respectively explore inter-video and inter-task relationships: i) Inter-video Semantic Correlation (ISC) performs cross-video frame-level interactions in a fine-grained manner, thereby capturing task-specific query features and enhancing both intra-class consistency and inter-class separability; ii) Inter-task Knowledge Transfer (IKT) retrieves and aggregates relevant temporal knowledge from the bank, which stores diverse temporal patterns from historical episode tasks. Extensive experiments on five benchmarks show that HR2G-shot outperforms current top-leading FSAR methods.
Similar Papers
Joint Image-Instance Spatial-Temporal Attention for Few-shot Action Recognition
CV and Pattern Recognition
Helps computers learn new actions from few examples.
Task-Specific Distance Correlation Matching for Few-Shot Action Recognition
CV and Pattern Recognition
Teaches computers to recognize actions from few examples.
Temporal Alignment-Free Video Matching for Few-shot Action Recognition
CV and Pattern Recognition
Teaches computers to recognize actions from few examples.