Score: 1

Evaluating the Goal-Directedness of Large Language Models

Published: April 16, 2025 | arXiv ID: 2504.11844v1

By: Tom Everitt , Cristina Garbacea , Alexis Bellot and more

BigTech Affiliations: Google

Potential Business Impact:

Helps AI focus better on its job.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

To what extent do LLMs use their capabilities towards their given goal? We take this as a measure of their goal-directedness. We evaluate goal-directedness on tasks that require information gathering, cognitive effort, and plan execution, where we use subtasks to infer each model's relevant capabilities. Our evaluations of LLMs from Google DeepMind, OpenAI, and Anthropic show that goal-directedness is relatively consistent across tasks, differs from task performance, and is only moderately sensitive to motivational prompts. Notably, most models are not fully goal-directed. We hope our goal-directedness evaluations will enable better monitoring of LLM progress, and enable more deliberate design choices of agentic properties in LLMs.

Country of Origin
🇺🇸 United States

Page Count
41 pages

Category
Computer Science:
Artificial Intelligence