Score: 0

Creating non-reversible rejection-free samplers by rebalancing skew-balanced Markov jump processes

Published: April 16, 2025 | arXiv ID: 2504.12190v2

By: Erik Jansson , Moritz Schauer , Ruben Seyer and more

Potential Business Impact:

Makes computer guessing faster and more reliable.

Business Areas:
A/B Testing Data and Analytics

Markov chain sampling methods form the backbone of modern computational statistics. However, many popular methods are prone to random walk behavior, i.e., diffusion-like exploration of the sample space, leading to slow mixing that requires intricate tuning to alleviate. Non-reversible samplers can resolve some of these issues. We introduce a device that turns jump processes that satisfy a skew-detailed balance condition for a reference measure into a process that samples a target measure that is absolutely continuous with respect to the reference measure. The resulting sampler is rejection-free, non-reversible, and continuous-time. As an example, we apply the device to Hamiltonian dynamics discretized by the leapfrog integrator, resulting in a rejection-free non-reversible continuous-time version of Hamiltonian Monte Carlo (HMC). We prove the geometric ergodicity of the resulting sampler under certain convexity conditions, and demonstrate its qualitatively different behavior to HMC through numerical examples.

Country of Origin
🇸🇪 Sweden

Page Count
28 pages

Category
Mathematics:
Statistics Theory