ViClaim: A Multilingual Multilabel Dataset for Automatic Claim Detection in Videos
By: Patrick Giedemann , Pius von Däniken , Jan Deriu and more
Potential Business Impact:
Helps find fake news in videos.
The growing influence of video content as a medium for communication and misinformation underscores the urgent need for effective tools to analyze claims in multilingual and multi-topic settings. Existing efforts in misinformation detection largely focus on written text, leaving a significant gap in addressing the complexity of spoken text in video transcripts. We introduce ViClaim, a dataset of 1,798 annotated video transcripts across three languages (English, German, Spanish) and six topics. Each sentence in the transcripts is labeled with three claim-related categories: fact-check-worthy, fact-non-check-worthy, or opinion. We developed a custom annotation tool to facilitate the highly complex annotation process. Experiments with state-of-the-art multilingual language models demonstrate strong performance in cross-validation (macro F1 up to 0.896) but reveal challenges in generalization to unseen topics, particularly for distinct domains. Our findings highlight the complexity of claim detection in video transcripts. ViClaim offers a robust foundation for advancing misinformation detection in video-based communication, addressing a critical gap in multimodal analysis.
Similar Papers
MultiCaption: Detecting disinformation using multilingual visual claims
Computation and Language
Find fake news in pictures and many languages.
Multilingual, Multimodal Pipeline for Creating Authentic and Structured Fact-Checked Claim Dataset
Computation and Language
Helps stop fake news with pictures and words.
Entity-aware Cross-lingual Claim Detection for Automated Fact-checking
Computation and Language
Finds fake news in many languages.