Score: 3

Event-Enhanced Blurry Video Super-Resolution

Published: April 17, 2025 | arXiv ID: 2504.13042v2

By: Dachun Kai , Yueyi Zhang , Jin Wang and more

Potential Business Impact:

Makes blurry videos sharp and clear.

Business Areas:
Image Recognition Data and Analytics, Software

In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.

Country of Origin
πŸ‡ΈπŸ‡¬ πŸ‡¨πŸ‡³ Singapore, China

Repos / Data Links

Page Count
12 pages

Category
Computer Science:
CV and Pattern Recognition