Score: 1

MGT: Extending Virtual Try-Off to Multi-Garment Scenarios

Published: April 17, 2025 | arXiv ID: 2504.13078v2

By: Riza Velioglu , Petra Bevandic , Robin Chan and more

Potential Business Impact:

Lets you see clothes on yourself from other photos.

Business Areas:
Virtual World Community and Lifestyle, Media and Entertainment, Software

Computer vision is transforming fashion industry through Virtual Try-On (VTON) and Virtual Try-Off (VTOFF). VTON generates images of a person in a specified garment using a target photo and a standardized garment image, while a more challenging variant, Person-to-Person Virtual Try-On (p2p-VTON), uses a photo of another person wearing the garment. VTOFF, in contrast, extracts standardized garment images from photos of clothed individuals. We introduce Multi-Garment TryOffDiff (MGT), a diffusion-based VTOFF model capable of handling diverse garment types, including upper-body, lower-body, and dresses. MGT builds on a latent diffusion architecture with SigLIP-based image conditioning to capture garment characteristics such as shape, texture, and pattern. To address garment diversity, MGT incorporates class-specific embeddings, achieving state-of-the-art VTOFF results on VITON-HD and competitive performance on DressCode. When paired with VTON models, it further enhances p2p-VTON by reducing unwanted attribute transfer, such as skin tone, ensuring preservation of person-specific characteristics. Demo, code, and models are available at: https://rizavelioglu.github.io/tryoffdiff/

Page Count
10 pages

Category
Computer Science:
CV and Pattern Recognition