Training-Free Hierarchical Scene Understanding for Gaussian Splatting with Superpoint Graphs
By: Shaohui Dai , Yansong Qu , Zheyan Li and more
Potential Business Impact:
Lets computers understand 3D objects from words.
Bridging natural language and 3D geometry is a crucial step toward flexible, language-driven scene understanding. While recent advances in 3D Gaussian Splatting (3DGS) have enabled fast and high-quality scene reconstruction, research has also explored incorporating open-vocabulary understanding into 3DGS. However, most existing methods require iterative optimization over per-view 2D semantic feature maps, which not only results in inefficiencies but also leads to inconsistent 3D semantics across views. To address these limitations, we introduce a training-free framework that constructs a superpoint graph directly from Gaussian primitives. The superpoint graph partitions the scene into spatially compact and semantically coherent regions, forming view-consistent 3D entities and providing a structured foundation for open-vocabulary understanding. Based on the graph structure, we design an efficient reprojection strategy that lifts 2D semantic features onto the superpoints, avoiding costly multi-view iterative training. The resulting representation ensures strong 3D semantic coherence and naturally supports hierarchical understanding, enabling both coarse- and fine-grained open-vocabulary perception within a unified semantic field. Extensive experiments demonstrate that our method achieves state-of-the-art open-vocabulary segmentation performance, with semantic field reconstruction completed over $30\times$ faster. Our code will be available at https://github.com/Atrovast/THGS.
Similar Papers
SceneSplat: Gaussian Splatting-based Scene Understanding with Vision-Language Pretraining
CV and Pattern Recognition
Teaches computers to understand 3D spaces from scans.
Interpretable Single-View 3D Gaussian Splatting using Unsupervised Hierarchical Disentangled Representation Learning
CV and Pattern Recognition
Makes 3D pictures understandable for computers.
Hi-LSplat: Hierarchical 3D Language Gaussian Splatting
CV and Pattern Recognition
Lets computers understand 3D objects from words.