A parallel implementation of reduced-order modeling of large-scale systems
By: Ionut-Gabriel Farcas , Rayomand P. Gundevia , Ramakanth Munipalli and more
Potential Business Impact:
Makes big computer models run much faster.
Motivated by the large-scale nature of modern aerospace engineering simulations, this paper presents a detailed description of distributed Operator Inference (dOpInf), a recently developed parallel algorithm designed to efficiently construct physics-based reduced-order models (ROMs) for problems with large state dimensions. One such example is the simulation of rotating detonation rocket engines, where snapshot data generated by high-fidelity large-eddy simulations have many millions of degrees of freedom. dOpInf enables, via distributed computing, the efficient processing of datasets with state dimensions that are too large to process on a single computer, and the learning of structured physics-based ROMs that approximate the dynamical systems underlying those datasets. All elements of dOpInf are scalable, leading to a fully parallelized reduced modeling approach that can scale to the thousands of processors available on leadership high-performance computing platforms. The resulting ROMs are computationally cheap, making them ideal for key engineering tasks such as design space exploration, risk assessment, and uncertainty quantification. To illustrate the practical application of dOpInf, we provide a step-by-step tutorial using a 2D Navier-Stokes flow over a step scenario as a case study. This tutorial guides users through the implementation process, making dOpInf accessible for integration into complex aerospace engineering simulations.
Similar Papers
Nested Operator Inference for Adaptive Data-Driven Learning of Reduced-order Models
Machine Learning (CS)
Makes complex science models run much faster.
Parametric Operator Inference to Simulate the Purging Process in Semiconductor Manufacturing
Numerical Analysis
Makes computer chips cleaner, faster.
Domain Decomposition-Based Coupling of High-Fidelity Finite Element and Reduced Order Operator Inference Models Using the Schwarz Alternating Method
Numerical Analysis
Makes computer models run much faster and better.