A computational framework for longitudinal medication adherence prediction in breast cancer survivors: A social cognitive theory based approach
By: Navreet Kaur , Manuel Gonzales IV , Cristian Garcia Alcaraz and more
Potential Business Impact:
Helps patients take medicine correctly for better health.
Non-adherence to medications is a critical concern since nearly half of patients with chronic illnesses do not follow their prescribed medication regimens, leading to increased mortality, costs, and preventable human distress. Amongst stage 0-3 breast cancer survivors, adherence to long-term adjuvant endocrine therapy (i.e., Tamoxifen and aromatase inhibitors) is associated with a significant increase in recurrence-free survival. This work aims to develop multi-scale models of medication adherence to understand the significance of different factors influencing adherence across varying time frames. We introduce a computational framework guided by Social Cognitive Theory for multi-scale (daily and weekly) modeling of longitudinal medication adherence. Our models employ both dynamic medication-taking patterns in the recent past (dynamic factors) as well as less frequently changing factors (static factors) for adherence prediction. Additionally, we assess the significance of various factors in influencing adherence behavior across different time scales. Our models outperform traditional machine learning counterparts in both daily and weekly tasks in terms of both accuracy and specificity. Daily models achieved an accuracy of 87.25%, and weekly models, an accuracy of 76.04%. Notably, dynamic past medication-taking patterns prove most valuable for predicting daily adherence, while a combination of dynamic and static factors is significant for macro-level weekly adherence patterns.
Similar Papers
Reinforcement Learning on Dyads to Enhance Medication Adherence
Machine Learning (CS)
Helps young patients take medicine after hospital.
A Joint Model of Longitudinal CVD Risk Factors, Medication Use, and Time-to-Terminal Events
Methodology
Predicts heart attack risk better with medicine.
Advancing Precision Oncology Through Modeling of Longitudinal and Multimodal Data
Quantitative Methods
Tracks cancer's changes to fight it better.