Shannon invariants: A scalable approach to information decomposition
By: Aaron J. Gutknecht , Fernando E. Rosas , David A. Ehrlich and more
Potential Business Impact:
Unlocks how brains and AI learn and grow.
Distributed systems, such as biological and artificial neural networks, process information via complex interactions engaging multiple subsystems, resulting in high-order patterns with distinct properties across scales. Investigating how these systems process information remains challenging due to difficulties in defining appropriate multivariate metrics and ensuring their scalability to large systems. To address these challenges, we introduce a novel framework based on what we call "Shannon invariants" -- quantities that capture essential properties of high-order information processing in a way that depends only on the definition of entropy and can be efficiently calculated for large systems. Our theoretical results demonstrate how Shannon invariants can be used to resolve long-standing ambiguities regarding the interpretation of widely used multivariate information-theoretic measures. Moreover, our practical results reveal distinctive information-processing signatures of various deep learning architectures across layers, which lead to new insights into how these systems process information and how this evolves during training. Overall, our framework resolves fundamental limitations in analyzing high-order phenomena and offers broad opportunities for theoretical developments and empirical analyses.
Similar Papers
Simple physical systems as a reference for multivariate information dynamics
Information Theory
Shows how tiny parts create big system behaviors.
Information Physics of Intelligence: Unifying Logical Depth and Entropy under Thermodynamic Constraints
Information Theory
Makes AI smarter by saving energy and time.
Information Physics of Intelligence: Unifying Logical Depth and Entropy under Thermodynamic Constraints
Information Theory
Makes AI smarter and use less energy.