Evaluation Framework for AI Systems in "the Wild"
By: Sarah Jabbour , Trenton Chang , Anindya Das Antar and more
Potential Business Impact:
Tests AI to ensure it works well and is fair.
Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use. Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance, which creates a gap between lab-tested outcomes and practical applications. This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems, emphasizing diverse, evolving inputs and holistic, dynamic, and ongoing assessment approaches. The paper offers guidance for practitioners on how to design evaluation methods that accurately reflect real-time capabilities, and provides policymakers with recommendations for crafting GenAI policies focused on societal impacts, rather than fixed performance numbers or parameter sizes. We advocate for holistic frameworks that integrate performance, fairness, and ethics and the use of continuous, outcome-oriented methods that combine human and automated assessments while also being transparent to foster trust among stakeholders. Implementing these strategies ensures GenAI models are not only technically proficient but also ethically responsible and impactful.
Similar Papers
Toward an Evaluation Science for Generative AI Systems
Artificial Intelligence
Tests AI to make sure it's safe and works.
Position: Evaluating Generative AI Systems Is a Social Science Measurement Challenge
Computers and Society
Makes AI tests more fair and accurate.
Evaluations at Work: Measuring the Capabilities of GenAI in Use
Artificial Intelligence
Tests how well people and AI work together.