Information Freshness in Dynamic Gossip Networks
By: Arunabh Srivastava, Thomas Jacob Maranzatto, Sennur Ulukus
Potential Business Impact:
Keeps information fresh even when connections change.
We consider a source that shares updates with a network of $n$ gossiping nodes. The network's topology switches between two arbitrary topologies, with switching governed by a two-state continuous time Markov chain (CTMC) process. Information freshness is well-understood for static networks. This work evaluates the impact of time-varying connections on information freshness. In order to quantify the freshness of information, we use the version age of information metric. If the two networks have static long-term average version ages of $f_1(n)$ and $f_2(n)$ with $f_1(n) \ll f_2(n)$, then the version age of the varying-topologies network is related to $f_1(n)$, $f_2(n)$, and the transition rates in the CTMC. If the transition rates in the CTMC are faster than $f_1(n)$, the average version age of the varying-topologies network is $f_1(n)$. Further, we observe that the behavior of a vanishingly small fraction of nodes can severely impact the long-term average version age of a network in a negative way. This motivates the definition of a typical set of nodes in the network. We evaluate the impact of fast and slow CTMC transition rates on the typical set of nodes.
Similar Papers
Age of Gossip With Cellular Drone Mobility
Information Theory
Drone speed and sharing speed both matter.
RC-Gossip: Information Freshness in Clustered Networks with Rate-Changing Gossip
Information Theory
Keeps everyone updated with the latest news faster.
Version Age of Information with Contact Mobility in Gossip Networks
Information Theory
Helps phones share news faster when moving.