Score: 1

SPC: Evolving Self-Play Critic via Adversarial Games for LLM Reasoning

Published: April 27, 2025 | arXiv ID: 2504.19162v2

By: Jiaqi Chen , Bang Zhang , Ruotian Ma and more

Potential Business Impact:

Teaches computers to find mistakes in their own thinking.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Evaluating the step-by-step reliability of large language model (LLM) reasoning, such as Chain-of-Thought, remains challenging due to the difficulty and cost of obtaining high-quality step-level supervision. In this paper, we introduce Self-Play Critic (SPC), a novel approach where a critic model evolves its ability to assess reasoning steps through adversarial self-play games, eliminating the need for manual step-level annotation. SPC involves fine-tuning two copies of a base model to play two roles, namely a "sneaky generator" that deliberately produces erroneous steps designed to be difficult to detect, and a "critic" that analyzes the correctness of reasoning steps. These two models engage in an adversarial game in which the generator aims to fool the critic, while the critic model seeks to identify the generator's errors. Using reinforcement learning based on the game outcomes, the models iteratively improve; the winner of each confrontation receives a positive reward and the loser receives a negative reward, driving continuous self-evolution. Experiments on three reasoning process benchmarks (ProcessBench, PRM800K, DeltaBench) demonstrate that our SPC progressively enhances its error detection capabilities (e.g., accuracy increases from 70.8% to 77.7% on ProcessBench) and surpasses strong baselines, including distilled R1 model. Furthermore, SPC can guide the test-time search of diverse LLMs and significantly improve their mathematical reasoning performance on MATH500 and AIME2024, surpassing those guided by state-of-the-art process reward models.

Page Count
19 pages

Category
Computer Science:
Computation and Language