Score: 1

A Multimodal Pipeline for Clinical Data Extraction: Applying Vision-Language Models to Scans of Transfusion Reaction Reports

Published: April 28, 2025 | arXiv ID: 2504.20220v1

By: Henning Schäfer , Cynthia S. Schmidt , Johannes Wutzkowsky and more

Potential Business Impact:

Reads checkboxes on paper forms automatically.

Business Areas:
Image Recognition Data and Analytics, Software

Despite the growing adoption of electronic health records, many processes still rely on paper documents, reflecting the heterogeneous real-world conditions in which healthcare is delivered. The manual transcription process is time-consuming and prone to errors when transferring paper-based data to digital formats. To streamline this workflow, this study presents an open-source pipeline that extracts and categorizes checkbox data from scanned documents. Demonstrated on transfusion reaction reports, the design supports adaptation to other checkbox-rich document types. The proposed method integrates checkbox detection, multilingual optical character recognition (OCR) and multilingual vision-language models (VLMs). The pipeline achieves high precision and recall compared against annually compiled gold-standards from 2017 to 2024. The result is a reduction in administrative workload and accurate regulatory reporting. The open-source availability of this pipeline encourages self-hosted parsing of checkbox forms.

Country of Origin
🇩🇪 Germany

Repos / Data Links

Page Count
7 pages

Category
Computer Science:
Computation and Language