Modeling AI-Human Collaboration as a Multi-Agent Adaptation
By: Prothit Sen, Sai Mihir Jakkaraju
Potential Business Impact:
AI helps people work better on certain tasks.
We develop an agent-based simulation to formalize AI-human collaboration as a function of task structure, advancing a generalizable framework for strategic decision-making in organizations. Distinguishing between heuristic-based human adaptation and rule-based AI search, we model interactions across modular (parallel) and sequenced (interdependent) tasks using an NK model. Our results reveal that in modular tasks, AI often substitutes for humans - delivering higher payoffs unless human expertise is very high, and the AI search space is either narrowly focused or extremely broad. In sequenced tasks, interesting complementarities emerge. When an expert human initiates the search and AI subsequently refines it, aggregate performance is maximized. Conversely, when AI leads, excessive heuristic refinement by the human can reduce payoffs. We also show that even "hallucinatory" AI - lacking memory or structure - can improve outcomes when augmenting low-capability humans by helping escape local optima. These results yield a robust implication: the effectiveness of AI-human collaboration depends less on context or industry, and more on the underlying task structure. By elevating task decomposition as the central unit of analysis, our model provides a transferable lens for strategic decision-making involving humans and an agentic AI across diverse organizational settings.
Similar Papers
Human-AI Collaboration: Trade-offs Between Performance and Preferences
Artificial Intelligence
AI learns to work better with people.
Towards Effective Human-in-the-Loop Assistive AI Agents
CV and Pattern Recognition
AI helps people do jobs better and faster.
Position Paper: Towards Open Complex Human-AI Agents Collaboration System for Problem-Solving and Knowledge Management
Artificial Intelligence
Helps people and AI work together better.