Score: 0

Modeling AI-Human Collaboration as a Multi-Agent Adaptation

Published: April 29, 2025 | arXiv ID: 2504.20903v2

By: Prothit Sen, Sai Mihir Jakkaraju

Potential Business Impact:

AI helps people work better on certain tasks.

Business Areas:
Artificial Intelligence Artificial Intelligence, Data and Analytics, Science and Engineering, Software

We develop an agent-based simulation to formalize AI-human collaboration as a function of task structure, advancing a generalizable framework for strategic decision-making in organizations. Distinguishing between heuristic-based human adaptation and rule-based AI search, we model interactions across modular (parallel) and sequenced (interdependent) tasks using an NK model. Our results reveal that in modular tasks, AI often substitutes for humans - delivering higher payoffs unless human expertise is very high, and the AI search space is either narrowly focused or extremely broad. In sequenced tasks, interesting complementarities emerge. When an expert human initiates the search and AI subsequently refines it, aggregate performance is maximized. Conversely, when AI leads, excessive heuristic refinement by the human can reduce payoffs. We also show that even "hallucinatory" AI - lacking memory or structure - can improve outcomes when augmenting low-capability humans by helping escape local optima. These results yield a robust implication: the effectiveness of AI-human collaboration depends less on context or industry, and more on the underlying task structure. By elevating task decomposition as the central unit of analysis, our model provides a transferable lens for strategic decision-making involving humans and an agentic AI across diverse organizational settings.

Page Count
34 pages

Category
Computer Science:
Multiagent Systems