Score: 2

Quaternion Nuclear Norms Over Frobenius Norms Minimization for Robust Matrix Completion

Published: April 30, 2025 | arXiv ID: 2504.21468v1

By: Yu Guo , Guoqing Chen , Tieyong Zeng and more

Potential Business Impact:

Fixes broken or missing data in complex pictures.

Business Areas:
Quantum Computing Science and Engineering

Recovering hidden structures from incomplete or noisy data remains a pervasive challenge across many fields, particularly where multi-dimensional data representation is essential. Quaternion matrices, with their ability to naturally model multi-dimensional data, offer a promising framework for this problem. This paper introduces the quaternion nuclear norm over the Frobenius norm (QNOF) as a novel nonconvex approximation for the rank of quaternion matrices. QNOF is parameter-free and scale-invariant. Utilizing quaternion singular value decomposition, we prove that solving the QNOF can be simplified to solving the singular value $L_1/L_2$ problem. Additionally, we extend the QNOF to robust quaternion matrix completion, employing the alternating direction multiplier method to derive solutions that guarantee weak convergence under mild conditions. Extensive numerical experiments validate the proposed model's superiority, consistently outperforming state-of-the-art quaternion methods.

Country of Origin
🇨🇳 🇭🇰 Hong Kong, China

Page Count
25 pages

Category
Computer Science:
CV and Pattern Recognition