Toward Onboard AI-Enabled Solutions to Space Object Detection for Space Sustainability
By: Wenxuan Zhang, Peng Hu
Potential Business Impact:
Helps satellites avoid crashing into each other.
The rapid expansion of advanced low-Earth orbit (LEO) satellites in large constellations is positioning space assets as key to the future, enabling global internet access and relay systems for deep space missions. A solution to the challenge is effective space object detection (SOD) for collision assessment and avoidance. In SOD, an LEO satellite must detect other satellites and objects with high precision and minimal delay. This paper investigates the feasibility and effectiveness of employing vision sensors for SOD tasks based on deep learning (DL) models. It introduces models based on the Squeeze-and-Excitation (SE) layer, Vision Transformer (ViT), and the Generalized Efficient Layer Aggregation Network (GELAN) and evaluates their performance under SOD scenarios. Experimental results show that the proposed models achieve mean average precision at intersection over union threshold 0.5 (mAP50) scores of up to 0.751 and mean average precision averaged over intersection over union thresholds from 0.5 to 0.95 (mAP50:95) scores of up to 0.280. Compared to the baseline GELAN-t model, the proposed GELAN-ViT-SE model increases the average mAP50 from 0.721 to 0.751, improves the mAP50:95 from 0.266 to 0.274, reduces giga floating point operations (GFLOPs) from 7.3 to 5.6, and lowers peak power consumption from 2080.7 mW to 2028.7 mW by 2.5\%.
Similar Papers
AI-Driven Collaborative Satellite Object Detection for Space Sustainability
Image and Video Processing
Satellites work together to avoid crashing.
Domain Adaptive Object Detection for Space Applications with Real-Time Constraints
CV and Pattern Recognition
Helps space cameras see real things better.
Small Object Detection: A Comprehensive Survey on Challenges, Techniques and Real-World Applications
CV and Pattern Recognition
Finds tiny things in pictures better.